class: center, middle, inverse, title-slide # Laboratorio Bio-demografico ## Lezione 13 - Altre visualizzazioni ### Nicola Barban
Alma Mater Studiorum Università di Bologna
Dipartimento di Scienze Statistiche ### 16 Marzo 2021
--- # pacchetti usati in questa lezione * `library(geofacet)` * `library(ggplot2)` * `library(treemapify)` * `library(gapminder)` * `library(tidyverse)` --- # Geofaceting  --- # Why geofaceting? * We can plot multiple variables or values per geographic entity – you can plot practically anything you can imagine inside each panel. * We can use more effective visual encoding schemes than just color. https://ryanhafen.com/blog/geofacet/ https://www.demographic-research.org/volumes/vol41/17/41-17.pdf --- # Usare il comando source ```r source("Incidenza_covid_regionale.R") ``` --- # Italy geofacet ```r library(geofacet) library(ggplot2) head(italy_grid3) ``` ``` ## row col code name ## 1 1 1 VAL Valle d'Aosta ## 2 1 3 TRE Trento ## 3 1 4 BLZ Bolzano ## 4 2 1 PIE Piemonte ## 5 2 2 LOM Lombardia ## 6 2 3 VEN Veneto ``` --- ```r ggplot(state_ranks, aes(variable, rank, fill = variable)) + geom_col() + coord_flip() + theme_bw() + facet_geo(~ state) ``` <img src="lezione13_files/figure-html/unnamed-chunk-3-1.png" width="50%" /> --- Prepariamo la griglia per la nostra visualizzazione ```r italy_grid3 <- italy_grid3 %>% mutate(area=code) %>% mutate(area=recode(area, "EMI"= "EMR", "FRI"="FVG", "BLZ"="PAB", "TRE"="PAT", "VAL"="VDA" )) ``` --- ```r plot_reg0+ facet_geo(~ area, grid = "italy_grid3", label ="name" ) ``` <img src="lezione13_files/figure-html/unnamed-chunk-5-1.png" width="50%" /> --- # Visualizzare dati multidimensionali www.mortality.org ```r LT_ITA<-read_table2("LT_Italy.csv") ``` --- # Riclassifico gli intervalli per età ```r breaks=c(0,2.5, seq(from=7, to=107, by=5),110) ITA<-LT_ITA %>% group_by(Year) %>% mutate(age= breaks ) ``` --- # visualizzo un anno solamente ```r ITA_1872 <- ITA %>% filter(Year==1872) # Plot ggplot(ITA_1872,aes(x=age, y=mx))+ geom_line(col="darkred")+ labs(title = "Mortalità 1872", x="age", y="tasso di mortalità") ``` <img src="lezione13_files/figure-html/unnamed-chunk-8-1.png" width="50%" /> --- ```r base0<-ggplot(ITA, aes(x=age, y=mx, group=Year))+ geom_line(col="grey", alpha=0.2)+ scale_y_log10()+ theme_bw() ``` --- ```r base0+ geom_line(data=subset(ITA,Year==1872), aes(col="1872"))+ geom_line(data=subset(ITA,Year==1918), aes(col="1918"))+ geom_line(data=subset(ITA,Year==2000), aes(col="2000"))+ labs(title = "Mortalità 1872-1918-2000", x="age", y="tasso di mortalità (log10)")+ scale_color_manual("Anno",values=c("darkred","darkblue","darkgreen"), label=c("1872", "1918", "2000")) ``` <img src="lezione13_files/figure-html/unnamed-chunk-10-1.png" width="50%" /> --- ```r base_e<-ggplot(ITA, aes(x=age, y=(ex), group=Year))+ geom_line(col="grey", alpha=0.2)+theme_bw() ``` --- ```r base_e+ geom_line(data=subset(ITA,Year==1872), aes(col="1872"))+ geom_line(data=subset(ITA,Year==1918), aes(col="1918"))+ geom_line(data=subset(ITA,Year==2000), aes(col="2000"))+ labs(title = "Aspettativa di vita 1872-1918-2000", x="age", y="aspettativa di vita")+ scale_color_manual("Anno",values=c("darkred","darkblue","darkgreen"), label=c("1872", "1918", "2000")) ``` <img src="lezione13_files/figure-html/unnamed-chunk-12-1.png" width="50%" /> --- # Contour plot ```r v<- ITA %>% ggplot(aes(y=age, x=Year, z=log10(mx*10^5))) v+ geom_contour() ``` <img src="lezione13_files/figure-html/unnamed-chunk-13-1.png" width="50%" /> --- # Contour filled ```r V<-v+ geom_contour_filled( show.legend = NA)+ ggtitle("Probabilità di morte per età e anno")+ labs(subtitle="Italia", caption="Human mortality database (https://www.mortality.org)")+ labs(fill = "Tassi di mortalità (scala logaritmica)") ``` --- ```r V+geom_contour(col="white", size=0.1) ``` <img src="lezione13_files/figure-html/unnamed-chunk-15-1.png" width="50%" /> --- ```r E<- ITA %>% ggplot(aes(y=age, x=Year, z=ex))+ geom_contour_filled( show.legend = NA)+ ggtitle("Aspettativa di vita per età e anno")+ labs(subtitle="Italia", caption="Human mortality database (https://www.mortality.org)")+ labs(fill = "Aspettativa di vita ") ``` --- ```r E ``` <img src="lezione13_files/figure-html/unnamed-chunk-17-1.png" width="50%" /> --- # Treemapify ```r #install.packages("treemapify") library(treemapify) library(gapminder) data(gapminder) T0<-gapminder %>% filter(year==2002) %>% ggplot( aes(area = pop, fill = continent, label = country)) + geom_treemap()+ geom_treemap_text(fontface = "italic", colour = "white", place = "centre", grow = TRUE) ``` --- ```r T0 ``` <img src="lezione13_files/figure-html/unnamed-chunk-19-1.png" width="50%" /> --- ```r T1<-gapminder %>% filter(year==2002) %>% ggplot( aes(area = gdpPercap*pop, fill = continent, label = country)) + geom_treemap()+ geom_treemap_text( colour = "white", place = "centre", grow = TRUE) ``` --- ```r T1 ``` <img src="lezione13_files/figure-html/unnamed-chunk-21-1.png" width="50%" /> --- ```r ieri= Sys.Date()-1 covid_regioni %>% mutate(data=as.Date(data)) %>% filter(data==ieri) %>% ggplot( aes(area = totale_casi, fill = totale_casi, label = denominazione_regione)) + geom_treemap()+ geom_treemap_text( colour = "white", place = "centre", grow = TRUE) ``` <img src="lezione13_files/figure-html/unnamed-chunk-22-1.png" width="50%" />