Introduction to sequence analysis (Lecture 3). Clustering and Examples

Nicola Barban

University of Bologna

January 20-21 2022

ALMA MATER STUDIORUM Università di Bologna

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ○ ○ ○

- Distance between sequences Different metrics (LCP, LCS, OM, HAM, DHD, ...)
- A dissimilarity is a quantification of how far two objects are. For instance, consider two incomes *x* and *y*:

•
$$d(x,y) = (x-y)^2$$

•
$$d(x,y) = |x-y|$$

6

•
$$d(A_{x_1,y_1}, B_{x_1,y_2}) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

 Optimal Matching, or LCS, DHD, ... compute distances for categorical trajectories?

지금 비가 말할 거 만큼 가지 끝에 있어야.

Cluster

- Cluster analysis automatically classify different objects in a reduced number of categories.
- It simplifies the large number of distinct sequences in a few different types of trajectories.
- It is used to build a typology of the trajectories. It offers a descriptive approach to analyze the sequences.

マリカウン語とい語と、 第二ののの

Cluster

- Clustering always start from a distance matrix. Usually euclidean distances between variables
- But clustering may be done using a dissimilarity matrix.
- Several methods for agglomerating observations in cluster procedures

- ゴロト海岸 い 編 いい起い 一番 一名&&

 Usually iterative procedure. At every step the most "similar" observations are grouped

- Ward is a hierarchical clustering algorithm.
- At each step, it joins together the two less distant groups.

· 데 P V 하루 V 달리 / 달리 이 등 · 영영(이

• Ward aims at minimizing the within cluster discrepancy.

- The number of clusters needs to be chosen by the researcher
- Several way to do that. No best method
 - Theory driven. You have some reason to believe that the best number of group is ...

マリカウン語とい語と、 第二の名の

- 2 Description of the clusters. Try different solutions
- O Dendogram

Dendogram

· 너무 · 해준 · 영화 · 전류· · 문 · 영상(8

Dendrogram of agnes(x = dist.om1, diss = T, method = "ward")

Dendogram pruning

· 너무 · 해준 · 영화 · 전류· · 문 · 영상(8

- Check the sample size of each cluster. You don't want to have too small clusters
- Check the distribution of clusters. Do you have "residual" clusters

マリカウン語とい語と、 第二の名の

- Try one less clusters. Check distribution
- Be parsimonious.

- Clusters can be described by their "center"
- This is called centroid sequence or medoid
- What is the sequence that is more "central"?
- "centrality" is equivalent less distance.
- The medoid distance is the sequence that is less distant in average to all the other sequences in the cluster

マリカウン語とい語と、 言、 めんの

Medoid 2

- Medoid are real sequence
- Easy to describe!
- (S-12)-(C-6)-(M-24)
- (S-6)-(C-03)-(S-09)-(M-12)-(S-12)

マロトマロの と言いて語い 言いのえる

Three types of graphics:

- Transversal distribution with seqdplot()
- Frequency plots with seqfplot()
- Individual index-plots seqiplot()

Use group = cluster.membership.factor to get
plots by clusters

マリカウン語とい語と、 言、 めんの

Determinants of trajectories

- It is possible to estimate the influence of independent covariates on the probability of belonging to a given cluster (i.e. type of trajectory) rather than another.
- We can fit, for instance, a logistic (multinomial) regression model

• Class membership can be used for further analysis

logistic regression

```
> summary(jobless.reglog)
```

```
Deviance Residuals:

Min 1Q Median 3Q Max

-0.8116 -0.5948 -0.5813 -0.3565 2.3613
```

```
Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.64230 0.19297 -8.510 < 2e-16 ***

maleMen -0.05032 0.22333 -0.225 0.821748

funempyes 0.70083 0.25466 2.752 0.005923 **

gcse5eqyes -1.03169 0.27872 -3.702 0.000214 ***

---

Signif. codes: 0 ,Äò***,Äô 0.001 ,Äò**,Äô 0.01 ,Äò*,Äô 0.05 ,
```

(Dispersion parameter for binomial family faken to be 1 = 386

Example : Family trajectories and Health

Barban (2013) Family Trajectories and Health: A Life Course Perspective. European Journal of Population

▲ロト ▲ 理 ト ▲ ヨ ト → ヨ → の Q (~

What is the association between family trajectories and health?

Lower health outcomes may be associated with:

- Earlier transitions (*timing*)
- 2 Number of transitions (quantum)
- On Non-normative transitions (sequencing)

Moreover, there might be some specific **patterns** of family formation that are associated with lower health outcomes.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- National Longitudinal Study of Adolescent Health (Add Health)
- Nationally representative sample of U.S. students in grades 7 through 12 in 1994. Cohort born 1976-1982.
- Four waves: WI 1995; WII 1996; WIII 2001–2002; WIV 2008–2009.
- Sample size: 20,000 students in wave I

For this study I restrict the sample to women who are 30 or older at Wave IV. The final sample size is 2,358

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Monthly sequence from age 15 to 30 In each month individuals can be classified as:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Single (S)
- Single Parent (SP)
- Ohabiting (C)
- Ochabiting parent (CP)
- Married (M)
- Married parent (MP)

Distribution of family states

▲□▶▲□▶▲□▶▲□▶ = つくで

Table: First 10 sequence pattern of transitions in Women 15-30.Weighted frequencies.

		Freq
1	S-C-M-MP	11.46
2	S-M-MP	10.46
3	S-C-M	5.93
4	S-C-CP-MP	4.41
5	S	4.37
6	S-C-S	3.46
7	S-C-S-C-M-MP	3.37
8	S-M	3.15
9	S-C	3.07
10	S-SP-CP-MP	2.77

Data: Add-health. Women 30 or older. **Health Outcomes:** (continuous vars)

- Self-reported health
- CES–D Depression scale
- # cigarettes smoked in the last month
- # number of episodes of heavy drinking in the last year (5 or more alcoholic cocktails)

▲ロト ▲ 理 ト ▲ ヨ ト → ヨ → の Q (~

Independent variables:

- Age at first transition (union, child) (timing)
- Number of transitions from wave I to wave IV (quantum)
- Number of non-normative transitions from wave I to wave IV (norm \rightarrow S–M–MP) (*ordering*) Controls:
 - Age, Age sq., Race/Ethnicity, Family composition at Wave I, Parent's education.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Typologies of trajectories

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – 釣��

Typologies of trajectories

▲□▶ ▲□▶ ★ 三▶ ★ 三▶ - 三 - のへで

Descriptive statistics

	Married	Late tran-	Married	Single	Cohabiting	Cohabiting
	mothers	sitions	women	Mothers	mothers	women
		Union status a	nd parenthoo	d		
Ever married	1.00	0.37	1.00	0.51	0.44	0.44
Ever cohabited	0.70	0.71	0.72	0.83	1.00	1.00
Children	1.00	0.19	0.40	1.00	1.00	0.21
		Age at first	transitions			
Age at first transition <18	0.58	0.12	0.32	0.63	0.79	0.46
Age at first transition 19-22	0.21	0.09	0.26	0.26	0.19	0.19
Age at first transition 23-25	0.21	0.38	0.42	0.11	0.02	0.36
Age at first transition >25	0.00	0.41	0.00	0.00	0.00	0.00
-	0	Quantum and seq	uencing indica	ators		
Number of transitions	3.37	2.41	3.14	3.89	3.79	3.32
Weave I-IV						
Normative transitions	1.78	0.53	1.60	0.74	0.54	0.65
Non-normative transitions	1.59	1.88	1.54	3.15	3.25	2.67
		Compositional	characteristic	s		
Proportion Black	0.1	0.18	0.06	0.34	0.31	0.14
Parents with college de-	0.19	0.27	0.38	0.15	0.07	0.22
gree						
Living with parents	0.49	0.56	0.63	0.29	0.26	0.52
Income family W1 (1000\$)	41.54	51.92	53.52	33.38	34.59	41.73
Sex before 16	0.38	0.23	0.22	0.43	0.56	0.31

Descriptive statistics

	Married	Late tran-	Married	Single	Cohabiting	Cohabiting
	mothers	sitions	women	Mothers	mothers	women
		Union status a	nd parenthoo	d		
Ever married	1.00	0.37	1.00	0.51	0.44	0.44
Ever cohabited	0.70	0.71	0.72	0.83	1.00	1.00
Children	1.00	0.19	0.40	1.00	1.00	0.21
		Age at first	transitions			
Age at first transition <18	0.58	0.12	0.32	0.63	0.79	0.46
Age at first transition 19-22	0.21	0.09	0.26	0.26	0.19	0.19
Age at first transition 23-25	0.21	0.38	0.42	0.11	0.02	0.36
Age at first transition >25	0.00	0.41	0.00	0.00	0.00	0.00
-	0	Quantum and seq	uencing indica	ators		
Number of transitions	3.37	2.41	3.14	3.89	3.79	3.32
Weave I-IV						
Normative transitions	1.78	0.53	1.60	0.74	0.54	0.65
Non-normative transitions	1.59	1.88	1.54	3.15	3.25	2.67
		Compositional	characteristic	s		
Proportion Black	0.1	0.18	0.06	0.34	0.31	0.14
Parents with college de-	0.19	0.27	0.38	0.15	0.07	0.22
gree						
Living with parents	0.49	0.56	0.63	0.29	0.26	0.52
Income family W1 (1000\$)	41.54	51.92	53.52	33.38	34.59	41.73
Sex before 16	0.38	0.23	0.22	0.43	0.56	0.31

Descriptive statistics (2)

	Married mothers	Late tran- sitions	Married women	Single Mothers	Cohabiting mothers	Cohabiting women
		Health statu	s at Weave I			
Prop. in poor health at WI	0.10	0.08	0.07	0.16	0.10	0.14
Prop. with depression symptoms at WI	0.25	0.23	0.22	0.28	0.29	0.35
Smoking at WI	0.39	0.42	0.35	0.42	0.50	0.46
Heavy drinking at Weave I	0.34	0.39	0.34	0.31	0.32	0.47
		Health status	at Weave IV			
Prop. in poor health at WIV	0.09	0.08	0.10	0.13	0.12	0.14
Prop. with depression symptoms at WIV	0.16	0.15	0.13	0.17	0.26	0.23
Smoking at WIV Heavy drinking at WIV	0.30 0.29	0.29 0.43	0.20 0.38	0.39 0.33	0.43 0.35	0.37 0.52

Lagged dependent variable model

$$Y_{i2} = \gamma D_i + \rho Y_{i1} + \beta_i X_{i1} + \epsilon_i 2 \tag{1}$$

where:

- Y_{i2} is vector of health indicators measured at Wave IV (Time 2)
- Y_{i1} represents a vector of identical health measures at Wave I (Time 1)
- *D_i* represents the characteristics of the sequence from Wave I to Wave IV.
- X_{i1} a vector of demographic controls and SES background at Wave I (race; parents' education;)

	(1) Peor	(2)	(3)	(4)
	Health	Depression	Smoking	Drinking
Late transitions (ref. category)				
Married mother w/o cohabitation	0.105	-0.053	-0.053	-0.715***
	(0.067)	(0.185)	(0.194)	(0.171)
Married women w/o cohabitation	0.086	0.091	-0.416	-0.343
	(0.076)	(0.242)	(0.255)	(0.203)
Single mothers	0.233**	-0.047	0.409	-0.370
	(0.087)	(0.262)	(0.238)	(0.231)
Cohabiting mothers w/o marriage	0.196*	0.672*	0.402	-0.258
	(0.092)	(0.325)	(0.242)	(0.252)
Cohabitation w/o children	0.234*	0.744*	0.257	0.265
	(0.114)	(0.317)	(0.349)	(0.266)
Self-reported health at wave I	0.250***	0.099	0.077	0.022
	(0.030)	(0.083)	(0.083)	(0.074)
Depression WI	0.021***	0.144***	0.003	-0.030*
	(0.006)	(0.016)	(0.018)	(0.014)
Smoking at wave I	0.084 (0.055)	0.099 (0.174)	1.952*** (0.158)	0.422** (0.145)

Discussion

- Early childbearing and long cohabitation are associated with negative health outcomes
- Protection effects of marriage on health behaviors
- Cohabitation seems to have no negative effect if short and followed by marriage

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Sequence analysis?

Sequence analysis

- seems to be an effective tool for investigating association between trajectories and other outcome
- Attention from transitions to trajectories
- Controlling for previous outcomes is necessary for selection issues
- Not very useful for causality issues but help to highlight disadvantaged situations
- Study can be enlarged to other health indicators (biomarkers) and to multivariate analysis (i.e. How previous smoking affects later drinking or depression)